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Relation between macroscopic and microscopic activation energies
in nonequilibrium surface processing

M. A. Gosálvez* and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, 02015 Espoo, Finland

~Received 22 April 2003; published 22 September 2003!

Realistic Monte Carlo simulations show that the apparent macroscopic activation energy is only partially
explained by the expected expression for the average over the microscopic activation energies for surface
processing. An additional term accounting for the existence of fluctuations in the fractions of particles has to be
taken into account. In all cases considered, the additional term can be accurately estimated bya posteriori
analysis of the temperature dependence of the surface densities. In addition, we demonstrate that the relative
contribution of the different competing microscopic processes to the macroscopic activation energy can be
accurately obtained during the simulations, allowing for the unambiguous identification of the particular
surface species which effectively control the process. As an example of the nonequilibrium open interfaces to
which the results apply, the case of wet chemical etching of crystalline silicon is considered. The results can be
directly applied to surface growth.
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I. INTRODUCTION

During surface growth and chemical etching, the interfa
is an example of an evolving nonequilibrium open syst
driven by the environment through the deposition or remo
of particles. The moving surface reaches a steady state w
well-defined apparent macroscopic activation energy~ob-
tained from an Arrhenius plot! for the overall growth or etch
rate. Since the macroscopic evolution of the surface—its m
tion, roughness, and morphology—can be modeled by
local dynamics stemming from a reduced set of microsco
activation energies@1,2#, it is physically meaningful to ex-
pect an analytical or numerical relation between macrosco
and microscopic activation energies.

The problem of understanding how the macroscopic
havior of a system is related to the interplay between
microscopic motion of the interacting particles and the c
figurational degeneracy of the available microstates is so
in statistical mechanics in terms of a compromise betw
internal energy and entropy at any temperature. If the sys
is in thermal equilibrium and its Hamiltonian can be define
the macroscopic value of an observable is obtained simpl
the ~ensemble! average of the values taken by the observa
over a large number~ideally infinite! of microstates@3#.
However, if the system is far from equilibrium—as is typ
cally the case during surface growth and wet chem
etching—it is not always clear how the macroscopic valu
of the observables can be found from their microsco
counterparts. As an example, the determination of the e
relation between the macroscopic activation energy of
growth/etch rate and the microscopic activation energies
the atomistic processes occurring at the surface turns o
be a nontrivial problem which has been traditionally ov
looked and exceedingly simplified.

Typically, as a result of an iterative sequence of lo
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processes, a self-organized nonequilibrium steady state
well-defined average values for the observables is reache
these open systems~surfaces!. Depending on the problem
the local dynamics may not even be related to an underly
Hamiltonian, but to a set of local activation energies whi
effectively control the formation of transient species betwe
the different microstates. In these cases, the usual techni
of equilibrium statistical dynamics cannot be used to obt
the averages. Furthermore, some observables—such a
total energy—are not well defined. Only the number of p
ticles removed from~incorporated to! the interface and the
energy cost of each removal~incorporation! have a meaning
and take indeed well-defined macroscopic values. The p
lem is to unveil the relation between these macroscopic
ues and the microscopic realizations of the observable.

The purpose of this paper is to describe several o
dimensional and two-dimensional interface systems wh
the above mentioned unexpected relation between ma
scopic and microscopic activation energies is observed in
context of anisotropic wet chemical etching. In particular
will be shown that the macroscopic activation energy of
etch rate is explained by the sum of two terms. One of th
corresponds to the average of the microscopic activation
ergies, and the other accounts for the existence of fluc
tions in the fractions of particles at fixed temperature. As
important side result, it will be demonstrated that the relat
weight of the different microscopic processes for the de
mination of the activation energy can be accurately obtai
during the course ofonesimulation, even if the energy con
tribution of each process may not be easily determined
our opinion, this is a most important issue, since it allows
the unambiguous identificationof the particular surface spe
cies which effectively control the etching process, allowing
quantitative measure of the relative importance of majo
and minority surface sites. The results directly apply to ot
systems in surface science, in particular to surface grow

We will consider three types of systems, represent
three different levels of modeling of the etching process~Fig.
1!. After giving a general overview of the common featur
©2003 The American Physical Society04-1
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to the three models in Sec. II and defining in Sec. III the e
rate, the activation energy, and the other quantities requi
a simplified two-dimensional exactly solvable surface mo
is presented in Sec. IV@Fig. 1~c!#. A more realistic model for
a two-dimensional solid with a one-dimensional surface
presented in Sec. V@Fig. 1~a!# and a full three-dimensiona
model for the simulation of anisotropic wet chemical etchi
of silicon is considered in Sec. VI@Fig. 1~b!#. Finally, we
draw our conclusions in Sec. VII.

II. OVERVIEW OF THE MODELS

In this study we consider one-dimensional~1D! and 2D
open moving interfaces~‘‘surfaces’’ embedded in 2D and 3D
environments, see Fig. 1! for use in the modeling and unde
standing of anisotropic wet chemical etching. We pres
here the general common features to these interfaces.

At any time, the interface is composed ofN ~not neces-
sarily constant! particles~labeled asi 51,2, . . . ,N) with re-
moval probabilities

pi5p0ie
2Ei /kBT, ~1!

whereT is the temperature,kB is the Boltzmann constant,Ei
is the microscopic activation energy for the removal fro
site i, andp0i is a prefactor. Each of theN atoms currently in
the surface belongs to one ofM different types of sites~also
referred to as particle/atom types, labeled asa
51,2, . . . ,M ). All sites of typea share the same prefacto
p0a but may have different activation energies.

The reason for choosing this Arrhenius form for the m
croscopic removal probabilitiespi lies in the experimenta
fact that the macroscopic etch rate typically follows
Arrhenius dependence on temperature@4,5#. This choice pre-
cisely guarantees the macroscopic Arrhenius behavior in
limiting case that the surface is made of only one type
particle. For more types of particles, it is not mathematica
guaranteed that a combination of microscopic Arrhenius
pendencies will lead to a global Arrhenius behavior. Ho
ever, if the etching process is controlled by only a few typ
of particles~perhaps only one!, then this choice is expecte
to provide the correct macroscopic dependence. As will
shown by means of the simulations reported in this wo
this assumption typically performs well even for the ca
when more than one surface species control the etc
process.

FIG. 1. ~Color online! Illustration of the interfaces considered
this study:~a! The 1D interface between a 2D square crystal and
environment~an etchant!. ~b! The 2D interface between crystallin
silicon and an etchant@a portion of'30330 nm2 vicinal Si~111! is
shown#. ~c! TheM-state thermal flipping chessboard~TFC!: an ana-
lytically solvable 2D model for evolving surfaces.
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The dynamics of the surface consists of random remov
of sites according to the probabilitiespi . In principle, the
microscopic activation energiesEi may be considered as pa
rameters that can be varied at will. However, in the m
realistic of the models presented here~Sec. VI!, the activa-
tion energies are obtained from a local energy function t
considers the geometry of the neighborhood, the numbe
bonds that need to be broken, and the interactions betw
the surface terminating species, OH and H. In any case,
local activation energiesEi can be thought to effectively con
trol the formation of transient species between the m
crostates of the surface before and after the removal. In
way, the evolution of the system in these models is not
sociated to any global energy function or Hamiltonian for t
whole system~which would include the surface, the etchan
the bulk, and the species in solution formed as products
the reaction!. This does not mean that such a function wou
not exist. However, it can be anticipated that the form of t
function will be very complex and, before it is resolved, w
must content ourselves with simplified approaches, such
the local dynamics used in this study. Accordingly, the m
roscopic evolution of the surface can be obtained usin
Monte Carlo scheme which randomly chooses surface s
and decides whether they are removed or not accordin
the probabilitiespi , such as that in Ref.@6#.

During the time evolution, the state of the surface is ch
acterized by the current numbers of particles of each t
$Na%a51

M , or, equivalently, by the current fractions$ f a

5Na /N%a51
M . Actually, onlyM21 of the$ f a%a51

M variables
are required to describe the system, since(a f a51. For
fixed values of the parameters,$p0a ;Ea%a51

M , and as a result
of the iterative sequence of local processes, the sur
reaches a self-defined steady state independent of the in
state and characterized by well-defined average va
$^ f a&%a51

M21.

III. ETCH RATE AND ACTIVATION ENERGY

A. Etch rate

The etch rate is defined as the distance traveled by
moving surface per unit time. When the etching process
reached the steady state, the etch rate is simply the rati
the distance traveled by the center of mass~c.m.! of the
surface DZc.m. to the period of time elapsedDt: R
5DZc.m./Dt. During a simulation,DZc.m. can be determined
as the sum of all individual shifts (DZc.m.) i of the surface
following eachsuccessful event(S), i.e., the sum over all
successful particle removalsi P$S% occurring duringDt,

R5
DZc.m.

Dt
5

1

Dt (
i P$S%

~DZc.m.! i . ~2!

Although (DZc.m.) i is typically positive, occasionally it may
be negative if the removal of sitei involves a reduction in the
total number of surface sites. In particular, certain site ty

e
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of the most realistic of our models for wet chemical etchi
~e.g., the trihydrides, see Sec. VI! typically contribute to the
motion of the c.m. with a negative shift on average. Altern
tively, we may consider the sum overall events( i P$A%),
independently of whether or not the event is a succes
removal,

R5
DZc.m.

Dt
5

1

Dt (
i P$A%

~DZc.m.! i pi . ~3!

Herepi is the removal probability of surface atomi, as given
by Eq. ~1!. Note that the~positive/negative! shift of the c.m.
of the surface due to the removal of atomi, (DZc.m.) i , may
be calculated independently of whether the atom is remo
or not. In principle, Eqs.~2! and~3! give statistically identi-
cal results for very long timesDt. In practice, Eq.~3! pro-
vides a more robust estimation~better statistics! of the etch
rate as it provides averages overall events while Eq.~2!
averages over only a fraction of them.

Equation~3! suggests that the etch rate is composed
two factors: one purely geometrical~the c.m. shifts! and one
purely numerical~the number of removed particles!. Indeed,
the etch rateR is proportional to the average number of su
face atoms removed from the surface per unit time^Ṅ↑&,

R5
DZc.m.

Dt
5DZ^Ṅ↑&, ~4!

and the proportionality constantDZ is precisely a measure o
the average shift in the c.m. of the surface per removed at
DZ is an exclusively geometrical feature of the etch rate
particular, it is independent of temperature. AlthoughDZ
may take different values for different surface orientatio
DZ does not depend on temperature for a fixed orientat
In this way, the temperature dependences ofR and^Ṅ↑& are
the same. This is an important observation because the
pearance of negative c.m. shifts (DZc.m.) i may affect the in-
terpretation of the relative importance~weight! of the differ-
ent particle types for the calculation of an average. Actua
the interpretation becomes meaningless if some of
weights are negative. However, the use of^Ṅ↑& is free of
these artifacts and allows unambiguous interpretation,
shown in this study.

There are three alternative ways to determine the rat
removal of particleŝ Ṅ↑& during the simulation.

~i! As in the case of the etch rateR, ^Ṅ↑& can be deter-
mined during the simulation using onlysuccessful events,

^Ṅ↑&5(1/Dt)( i P$S%1, or, alternatively, usingall events,

^Ṅ↑&5
1

Dt (
i P$A%

pi . ~5!

Note that the average of the number of surface atomN
~not a constant! can be written similarly as ^N&
5(1/Dt)( i P$A%1.

~ii ! The rate of removal of particleŝṄ↑& can be written in
terms of a sum over the different types of surface sitesa
51,2, . . . ,M ,
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^Ṅ↑&5 (
a

^Na&^pa&, ~6!

where^pa& is the average probability of removal of a surfa
site of typea,

^pa&5

(
i Pa

pi

(
i Pa

1

, ~7!

~‘‘ i Pa ’’ stands for the sum over all events concerning t
sites of typea) and ^Na& is the average number of sites o
type a,

^Na&5
1

Dt (
i Pa

1. ~8!

Note that ^Na&^pa& is the average number of particles
type a that are removed per unit time, denoted as^Ṅa

↑ &.
Thus Eq.~6! is just the sum of the removed particles over
particle types,̂ Ṅ↑&5(a^Ṅa

↑ &.
~iii ! The rate of removal of particleŝṄ↑& may also be

expressed in terms of theaverage fraction of particles re-

moved per unit timêḟ ↑&,

^Ṅ↑&5^N&^ ḟ ↑&5^N& (
a

^ f a&^pa&. ~9!

Here we have defined̂f a& as theaverage fraction of par-
ticles of typea,

^ f a&5
^Na&

^N&
. ~10!

As done for interpreting Eq.~6!, we can think of the last term
in Eq. ~9! as a sum over the fractions of particles of each ty
that are removed per unit time@^ ḟ a

↑ &5^ f a&^pa&#: ^ ḟ ↑&
5(a^ ḟ a

↑ &.

B. Activation energy

In relation to the etch rateR, the activation energyEa is,
by definition, the slope of the curveR5R(b) in an Arrhen-
ius plot, whereb is the inverse temperatureb51/kBT,

Ea52
] ln R

]b
52

1

R

]R

]b
. ~11!

Very often, this curve is a straight line for wide ranges ofb
and the activation energy is thus a constant. However,
worth to keep in mind that, in principle, Eq.~11! allows Ea
to be any function ofb.

As discussed in the context of Eq.~4!, the geometrical
factor DZ is independent of the temperature. Thus the a
vation energy may be written as the logarithmic derivative
the rate of removal of particles,
4-3
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Ea52
] ln^Ṅ↑&

]b
. ~12!

Note that in principle, we have three alternative equival
expressions for the rate of removal of particles^Ṅ↑& @namely,
Eqs.~5!, ~6!, and~9!#. Although all three expressions provid
the same values for̂Ṅ↑& in the simulations, the final expres
sion for the activation energy is found to depend on
choice. If we consider Eq.~9! and recognize that̂N&, ^ f a&,
and^pa& may be functions of the temperature, the derivat
in Eq. ~12! can be expressed as the sum of three terms,

Ea
(N, f ,p)5E^N&1Ea

( f )1Ea
(p)

5E^N&1(
a

^wa
↑ &E^ f a&1(

a
^wa

↑ &E^pa& , ~13!

where

E^X&52
] ln^X&

]b
, X5N, f a , pa ~14!

and^wa
↑ & is theaverage normalized fraction of removed pa

ticles of typea:

^wa
↑ &5

^ ḟ a
↑ &

(
a

^ ḟ a
↑ &

5
^ f a&^pa&

(
a

^ f a&^pa&

. ~15!

However, the use of Eq.~6! as an alternative for̂Ṅ↑& in Eq.
~12! results in the last two terms:

Ea
( f ,p)5Ea

( f )1Ea
(p)5(

a
^wa

↑ &E^ f a&1(
a

^wa
↑ &E^pa& ,

~16!

and the use of Eq.~5! results in the last term only:

Ea
(p)5

(
i P$A%

piEi

(
i P$A}

pi

~17a!

5

(
a

^ f a&^pa&E^pa&

(
a

^ f a&^pa&

~17b!

5(
a

^wa
↑ &E^pa& . ~17c!

Intuitively, in an initial approach to the determination ofEa ,
one would expect Eq.~17! @in either form ~17a!, ~17b!, or
~17c!# to be the correct expression@7#. For instance, in eithe
form ~17b! or ~17c!, it represents the sum~over all species!
of the average amount of particles leaving the surface (^wa

↑ &)
03160
t

e

e

multiplied by the average removal energy cost (E^pa&), and

in form ~17a! it has the typical form of an ensemble averag
However, this turns out to be a simplified approach. T
previous intuitive reasoning does not take into account
fact that the fractions of particles$ f a% a51

M are functions of
temperature. Due to the normalization condition(a f a51,
the fluctuations in the surface fractions at fixed temperat
are asymmetric about the average values~Sec. IV C 2!, a
phenomenon that is macroscopically observed as a prefe
direction of change for each of the surface fractions when
temperature is changed. As an example, ifM52, one of the
surface fractions increases with temperature while the o
decreases. This type of variations in^ f a& with temperature
is considered in Eqs.~13! and ~16! through the terms
E^ f a&Þ0.

Similarly, one would initially expect̂ N& to change~in-
crease! with temperature. However, this can only happen
the formation of overhangs on the surface is very freque
On the other hand, for conditions producing single-valu
surfaces, which is the case in wet chemical etching,^N& does
not vary with temperature. Thus, for the purpose of model
wet chemical etching,̂N& is independent of the temperatu
and the use of Eq.~16! instead of Eq.~13! is justified.

Equation~16! is the central result of the present study. B
determining the temperature dependence of the rem
probabilities^pa& and the surface fractionŝf a&, it will be
shown that the two contributionsEa

(p)1Ea
( f ) accurately de-

scribe the macroscopic activation energy of the etch rate
particular, it will be shown that, in the worst case,Ea

(p) and
Ea

( f ) can be accurately estimated in aa posteriorianalysis of
the temperature dependence of the removal probabilities
surface fractions, respectively. An additional interesting f
ture of Eq.~16! is that the relative weight of each partic
type for the determination of the macroscopic activation
ergy is given by the average normalized fractions of remo
particles^wa

↑ &, which can be easily computed at any tem
perature during each simulation. As we will see, this w
enable an estimation of the relative importance of the diff
ent species in the etching process. In particular, it will
shown that the relative contributionsea of the different atom
types to the total macroscopic activation energy, defin
from Eq. ~16! as

ea5
^wa

↑ &~E^ f a&1E^pa&!

(
a

^wa
↑ &~E^ f a&1E^pa&!

, ~18!

are described approximately by^wa
↑ & in all models consid-

ered, even exactly in one particular model~Sec. IV!.
Let us stress the fact that the activation energiesE^ f a& in

Eq. ~16! correspond to fluctuations in the numbers of p
ticlesNa at each temperature. To see this, note first that, a
result of the temperature independence of^N&, we have
4-4
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E^ f a&52
1

^ f a&

]^ f a&
]b

52
1

^N&^ f a&

]~^N&^ f a&!

]b

52
1

^Na&

]^Na&
]b

. ~19!

Thus, in order to determineE^ f a& it will be sufficient to find

an expression for]^Na&/]b. In order to do so, we may
consider the expression for the fluctuations in the number
particles^(dNa)2&[^Na

2&2^Na&2 in the grand canonical en
semble for open systems,

^Na
2&2^Na&25

]^Na&
]~bma!

, ~20!

where ma is the chemical potential of the speciesa. This
leads to the following expression for]^Na&/]b:

]^Na&
]b

5~^Na
2&2^Na&2!S ma1b

]ma

]b D . ~21!

Thus, Eqs.~19! and ~21! formally demonstrate that the act
vation energiesE^ f a& are directly related to the fluctuations

the numbers of particlesNa . Unfortunately, it is not clear
how the chemical potentialsma5]E/]Na can be deter-
mined, since the total energyE has not been defined.

The previous interpretation of the termEa
( f )

5(a^wa
↑ &E^ f a& as originating from the fluctuations in th

numbers of particlesNa illustrates the fact that, as long a
the explicit expression for the dependence of^ f a& on tem-
perature is not available~or, otherwise, a method to dete
mine the chemical potentials is devised!, the determination
of the activation energiesE^ f a& can be done onlya posteriori

by using the simulated data for^ f a& at different tempera-
tures. This is precisely the approach taken in the pres
work in order to understand how the macroscopic activat
energy of the etch rate takes a particular value. Incidenta
there exists a nontrivial meaningful model of wet chemi
etching for whichE^ f a& can be calculated analytically. Thi
will be the subject of Sec. IV.

IV. THERMAL FLIPPING CHESSBOARD „TFC…

A. The M-particle TFC model

Consider a two-dimensional system composed of t
types of sites~‘‘white’’ and ‘‘black’’ or, equivalently, ‘‘1’’ and
‘‘0’’ ! in which the white~black! sites have a probabilityp1
5p01e

2E1 /kBT (p05p00e
2E0 /kBT) to be removed from the

system, independently of the state of their neighborhood.
removal of a white~black! site leads to the appearance of
black ~white! site with probabilityp1→0 (p0→1) and of a
white ~black! site with probabilityp1→1 (p0→0). The tran-
sition matrix P5(pab)[(pa→b) characterizes the prob
ability of any conversion between the two species. Sin
every removed site is always replaced by another site~which
03160
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can be of either type! the transition matrixP satisfies the
following normalization conditions:

p001p0151, p101p1151. ~22!

The local dynamics of the system consists of random
movals of white and black sites with probabilitiesp1 andp0,
leading to the appearance of white or black sites accordin
the probabilitiespab . The macroscopic evolution of the sys
tem is obtained as indicated in Sec. II. The state of the s
tem is characterized by, e.g.,f 1 ~as f 0 is obtained fromf 0
1 f 151) and the total number of sitesN is constant. The
system is purely two dimensional and there are no he
changes associated to the site removals. In consequence
etch rate in this model can only be defined as the rate
removal of particleŝṄ↑&. The equivalent fractional measur

^ ḟ ↑& will be used.
The important feature of the current model is that it offe

the possibility to study the relation between macroscopic
microscopic activation energies without the additional dif
culties involved in more realistic models of wet chemic
etching. The interesting feature of the model resides in
use of the temperatureT and not in the existence of two
states. In fact, the number of states may become arbitra
large~sayM ) without further complications. We will refer to
the proposedM-particle model as thethermal flipping chess-
board. Figure 1~c! shows a snapshot of theM53 TFC
model.

Note that the two-state TFC model (M52) can be
mapped to the 2D Ising model@8#, although no interactions
between the neighbors have been defined through a Ha
tonian and, in general, the transitions between the two st
are partial~as implied by a general transition matrix!. The
relation between the two models becomes clearer in the
ticular case that the transition matrix is chosen as

S p00 p01

p10 p11
D 5S 0 1

1 0D , ~23!

in which case every white site that is removed is replaced
a black site, and the reverse. In principle, theM-particle TFC
can be similarly mapped to theq-state Potts model@9#.

The TFC model contains the basic ingredient for t
simulation of chemical etching, namely, that the removal
one surface site produces the incorporation of new sites
the surface and/or a transformation of the site type of
already existing neighboring surface sites. This essential
ture is incorporated in the model by the use of the transit
matrix P. The TFC model is convenient for two reason
first, because the total number of particlesN in the system is
fixed; second, because there are no geometrical change
volved in the site-type transformations. These two featu
differ from the typical case found in more realistic models
chemical etching~Secs. V and VI! and will allow us to dem-
onstrate that the deviations in the determination of the m
roscopic activation energy~occurring both in this and the
more realistic models! are neither related to fluctuations i
the total number of particlesN nor to complicated geometri
cal effects.
4-5
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In the TFC model, the transition matrix (pab) is a param-
eter, independent of other variables such as the rem
probabilitiespa and the temperatureT. This turns out to be a
useful difference with respect to the more realistic syste
in which the transition matrix depends on the removal pr
abilities, the temperature, and the underlying geometry of
bulk structure. In fact, the independence ofP from tempera-
ture allows one to solve analytically the TFC model exac
for any numberM of particle types. This makes the TF
systems ideal for testing and judging the goodness of
approach for the~a posteriori! determination of the contri-
bution Ea

( f ) in Eq. ~16! in more realistic models of we
etching.

B. Analytical solution of the M-particle TFC model

Consider theM-particle TFC model introduced in the pre
ceding section. At any instant, the rate of change in the fr
tion of particles of typea is given by the master equation

] f a

]t
52pa f a1 (

b51

M

pbapb f b ~; a51,2, . . . ,M !,

~24!
03160
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s,
-
e

ur

c-

where 2pa f a is the number of particles of typea being
removed and(b51

M pbapb f b corresponds to the number ofa
particles being created due to the removal of all other typ
HereP5(pab)[(pa→b) is the transition matrix whose el
ementpba5pb→a describes the probability that a site o
typea will be created following the removal of a site of typ
b. Since the removal of one particle always leads to
appearance of another particle, the transition matrix satis
the normalization condition

(
b51

M

pab51 ~; a51,2, . . . ,M !. ~25!

We are interested in finding the values off a that are solu-
tions of the steady state of Eq.~24! (] f a /]t50) and simul-
taneously satisfy the restriction:

(
a51

M

f a51. ~26!

In the steady state, Eq.~24! can be written as
~27!

where P† is the transpose ofP and I is the identity matrix. Writingpaa2152(bÞapab from Eq. ~25! shows that
det(A)50. Thus, one of theM equations is redundant~e.g., the last one! and may be substituted by Eq.~26!, as in

S ~p1121!p1 p21p2 p31p3 ••• pM1pM

p12p1 ~p2221!p2 p32p3 ••• pM2pM

p13p1 p23p2 ~p3321!p3 ••• pM3pM

A A A � A

1 1 1 ••• 1

D S f 1

f 2

f 3

A

f M

D 5S 0

0

0

A

1

D . ~28!
ons
c-
e

After some algebra, the solution to Eq.~28! is found to be
~note f a→^ f a& andpa→^pa&)

^ f a&5

ca

^pa&

(
b51

M
cb

^pb&

~a51,2, . . . ,M !, ~29!

where

ca5det~Maa
A ! ~30!
andMaa
A is the matrix minor corresponding to elementAaa

of matrix A. For instance, ifM53 one gets

c1512p222p331p22p332p23p32, ~31!

and similar relations forc2 andc3.
The eigenvalue-problem form of Eq.~27! suggests an al-

ternative way to solve for the steady-state surface fracti
f a . The idea is to solve first for the eigenve
tor g5(g1 ,g2 , . . . ,gM) corresponding to the eigenvalu
l51 of P† and to find f as (f 1 , f 2 , . . . ,f M)
5(g1 /p1 ,g2 /p2 , . . . ,gM /pM). This can be done by multi-
4-6
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RELATION BETWEEN MACROSCOPIC AND . . . PHYSICAL REVIEW E68, 031604 ~2003!
plying P by itself several times until the result does not va
and taking (g1 ,g2 , . . . ,gM) as any of the rows of the resul
ing matrix @10#. This procedure is computationally more e
ficient for the determination of theca’s ~asga’s! if the num-
ber of particle typesM is large. The advantage of th
approach followed in the derivation of Eq.~29! is that it
provides an exact analytical expression for^ f a& in terms of
the removal probabilitieŝpa& and the transition matrixP.

The physical meaning of Eq.~29! is intuitively simple as
it states that the average number of particles^ f a& of type a
at the surface is inversely proportional to their removal pr
ability ^pa& and proportional to the removal probabilities
the rest species through the normalizing fac
(b51

M cb /^pb&. Note that, in addition to the steady-state co
dition for the master equation@Eq. ~24!#, the derivation of
Eq. ~29! makes use of very general relations, such as E
~25! and~26!. Therefore, it would seem that Eq.~29! is very
general and should be valid also for other models of w
chemical etching. This is not the case, as will be shown
Sec. V.

Due to the temperature independence of the coefficie
ca in Eq. ~29!, an exact expression for the macroscopic
tivation energy can be obtained for theM-particle TFC
model. The independence ofca from temperature stems from
the fact that, according to Eq.~30!, the coefficientsca
are completely determined by the transition matrixP,
which, being an input parameter in this model, is fix
for all temperatures. Thus the evaluation ofE^ f a&5

2] ln^fa&/](1/kBT) @using Eq.~29!# for the determination of
the macroscopic activation energy according to Eq.~16! be-
comes straightforward. The result is

E^ f a&52E^pa&1 (
b51

M

^ f b&E^pb& . ~32!

Thus, the macroscopic activation energy can be determ
by substituting Eq.~32! into Eq. ~16! to get

Ea5 (
a51

M

^ f a&E^pa& . ~33!

Equation~33! provides a very simple relation between t
microscopic energiesE^pa& and the macroscopic energyEa

for the M-particle TFC model with temperature-independe
transition matrix. The simplicity of this result is surprisin
After all, the macroscopic activation energy in the TF
model is literally the ‘‘total energy’’ of the surface. Howeve
this result should not be overinterpreted by expecting
same to be true in other models. In particular, Eq.~33! fails
to provide the macroscopic activation energy in the case
temperature-dependent transition matrices, which is the
in more realistic approaches to wet chemical etching. Mo
over, it is easily verified that in the TFC model the relati
contributionsea of the different atom types to the total ma
roscopic activation energy, defined in Eq.~18!, take the
simple valueea5^wa

↑ &, while the alternative definition from
Eq. ~33!,
03160
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^ f a&E^pa&

(
a

^ f a&E^pa&

, ~34!

does not lead to a simplified expression. This suggests
the normalized fractions of removed particles^wa

↑ & are a
natural measure of the relative importance of the differ
surface sites for the macroscopic activation energy, as t
clearly are~by definition! for the etch rateR itself. Actually,
we will see that, althougheaÞ^wa

↑ & in the more realistic
models, the two measures take similar values and the
malized fractionŝ wa

↑ & can be used as indicators of relativ
importance.

C. Results for the TFC model

1. Macroscopic activation energy

We report on results for the TFC model on square regi
containing N52500, 10 000, and 40 000 sites for two
particle (M52) and three-particle (M53) systems. Since
the TFC model is analytically solvable for anyM ~Sec.
IV B !, the purpose of this section is not to provide numeri
proof of the exact results but to illustrate by means of a f
examples how the values of the temperature-averaged m
roscopic activation energy can be accurately describeda
posteriori analysis of the results at different temperatur
This will support the analysis made in the more realis
models of wet etching.

For M52, we consider two examples for the case of t
trivial transition matrix given by Eq.~23! ~casesA and B)
and a third example~caseC) for a more general transition
matrix, chosen as

P5S 0.25 0.75

0.65 0.35D . ~35!

Two representative examples for the case of different en
gies @11# (E150.3 eV,E050.5 eV) are considered: (A)
equal prefactors (p015p00553103) and (B and C) differ-
ent prefactors (p01553103,p00523106). For M53 ~case
D) the transition matrixP, the microscopic activation ener
gies Ea ~in eV!, and the prefactorsp0a are chosen as fol-
lows:

P5S 0.001 10 0.080 56 0.918 34

0.029 37 0.472 02 0.498 61

0.039 61 0.585 81 0.374 58
D ,

S E1

E2

E3

D 5S 0.0

0.3

0.5
D , S p01

p02

p03

D 5S 1.0

53103

23106
D . ~36!

This choice ofP corresponds to the transition matrix of
one-dimensional interface with three types of particles at l
temperature~Sec. V!, whose microscopic activation energie
and prefactors are similar to those of Eq.~36! and whose
dynamics are dominated by slow etch pit formation follow
4-7
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M. A. GOSÁLVEZ AND R. M. NIEMINEN PHYSICAL REVIEW E 68, 031604 ~2003!
by fast step propagation. A summary of the choice of para
eters for casesA, B, C, andD is given in Table I.

Figure 2~a! shows the rate of removal of particles^ ḟ ↑& as
a function of temperature for caseD as an example of the
typical behavior obtained in all cases. The exact curve in
main frame is obtained by plottinĝḟ ↑& from Eq. ~9! with
^ f a& from Eq. ~29! andca from Eq. ~30!. In the case of the
exact curve for the macroscopic activation energyEa in the
inset, Eq.~33! is used. The agreement between the simu
tion points and the exact curve~main frame! is very good.
Note that the exact curve is slightly bent, illustrating the fa

TABLE I. Summary of parameters for casesA, B, andC.

N p01 p00 E1(eV) E0(eV) P

A 1003100 53103 53103 0.3 0.5 Eq.~23!

B 1003100 53103 23106 0.3 0.5 Eq.~23!

C 50350 53103 23106 0.3 0.5 Eq.~35!

Da 50350

aParameters for caseD from Eq. ~36!.
03160
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e
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that the combination of microscopic removal rates~each fol-
lowing the Arrhenius behavior! does not guarantee linea
Arrhenius behavior for the global macroscopic rate~Sec. II!.
As a result, the macroscopic activation energy is not cons
but, rather, a~smooth! function of temperature, as shown i
the inset. Nevertheless, the assumption of linear macrosc
behavior and constant activation energy is reasonably g
as the range of temperatures of interest in wet chemical e
ing is small. This is shown by the similarity between th
slope of the linear fitEa

lin-fit'0.44 eV and the average slop
of the exact curvêEa&'0.42 eV ~inset!. Closer results are
obtained for casesA–C.

Let us now pretend for a moment that the temperat
dependence of̂f a& is not analytically knowna priori ~as it
is the case for the more realistic models of wet etching!, so
that an exact expression for the macroscopic activation
ergy @as Eq.~33! for the TFC model# cannot be derived. It is
still possible to understand how the macroscopic activat
energy~considered as an average over all temperatures,
essentially as the slope of the linear fit! gets its value. The
macroscopic activation energy obtained from the linear fit
Fig. 2~a! ~and corresponding linear fits for casesA–C) is
shown in Fig. 3, together with the values for the contrib
FIG. 2. ~Color online! Arrhenius plot of~a! the rate of removal of particleŝḟ ↑& and the surface fractions~b! ^ f 1&, ~c! ^ f 2&, and~d! ^ f 3&
for caseD.
4-8
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RELATION BETWEEN MACROSCOPIC AND . . . PHYSICAL REVIEW E68, 031604 ~2003!
tions Ea
(p) and Ea

( f ) @defined through Eq.~16!#. Figure 3
shows that the termEa

(p) alone fails to explain the macro
scopic activation energy in all four cases and that the te
Ea

(p) accurately describes the deviations. The macrosco
activation energy is thus explained as the sumEa

(p)1Ea
( f ) .

Note that the value ofEa
(p) is computed at each temperatu

during the simulations@usingE^pa&5Ea in Eq. ~17! with the

weights^wa
↑ & given by Eq.~15!# but, since the temperatur

dependence of̂f a& is not knowna priori ~as we are pretend
ing!, Ea

( f ) can ‘‘only’’ be determineda posteriori from the
temperature analysis of the values obtained in the sim
tions. This is done in Figs. 2~b!–2~d!, where it is shown that
linear fits to the simulation results for^ f a& can be used to
provide approximations to the values of the slopesE^ f a& .

The values quoted in Fig. 3 forEa
(p) , Ea

( f ) , andEa
(p)1Ea

( f )

FIG. 3. ~Color online! Activation energyEa
lin-fit explained as the

sumEa
(p)1Ea

( f ) @Eq. ~16!# for casesA–D.
03160
m
ic

a-

correspond to the temperature-averaged values over
simulated temperatures.

The previous procedure, although not strictly required
the exactly solvable TFC model, illustrates the method t
will be applied in the more realistic models of wet etching
order to describe the temperature-averaged values of
macroscopic activation energies. It shows that
~temperature-averaged! macroscopic activation energy—
described approximately by the slope of a linear fit—can
approximated by evaluating the termEa

( f )5(a^wa
↑ &E^ f a& a

posteriori from the temperature dependence of the surf
fractions^ f a&.

2. Non-Gaussian statistics

As commented in Sec. III B, the fluctuations in the num
bers of particlesNa ~or, equivalently, inf a) are expected to
be asymmetric about their mean value^ f a&, due to the con-
straint(a f a51 (0, f a,1).

As an example of this typical feature, Fig. 4~a! shows the
probability density functionP( f 1) at three temperatures fo
caseA ~Sec. IV C 1!. Following Ref.@12#, P( f 1) is shown as
the quantitysP( f 1) plotted against (f 12^ f 1&)/s for better
comparison of the different probability densities. Here,s is
the standard deviation of the data,s5@(P( f 1)( f 1
2^ f 1&)

2#1/2. If P( f 0) were drawn in this figure, a mirro
reflection of the shown curves about (f 12^ f 1&)/s50 would
be obtained.

The main feature of the probability densities is the asy
metry ~skewness!. Figure 4~a! shows that, as the temperatu
is decreased, the distribution becomes more skewed and
mean value decreases. Similarly, the skewness of the d
bution increases as the system size is decreased@Figure
4~b!#, although in this case the mean value does not dep
on size. The reason for this increase in skewness with
creasing temperature and decreasing size can be found i
constraint(a f a51, with 0, f a,1.
FIG. 4. ~Color online! Probability density functionP( f ) for the fluctuations in the fraction of particles of type 1 (f [ f 1) for caseA: ~a!
at three different temperatures in logarithmic and natural~inset! scale, and~b! for three system sizesN550350, 1003100, 2003200.
^ f &50.002 53 for all cases in~b!.
4-9
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M. A. GOSÁLVEZ AND R. M. NIEMINEN PHYSICAL REVIEW E 68, 031604 ~2003!
In the case of the variation with temperature, note that
mean valueŝ f 1& and ^ f 0&512^ f 1& get more separate
from each other and, correspondingly, closer to their limit
values~0 and 1, respectively! as the temperature is decreas
@legend in Fig. 4~a!#. Since ^ f 1& cannot become less tha
zero and^ f 0& cannot be larger than 1, the fluctuations a
forced to occur more frequently within the region betwe
the two mean values. As a result, the positive tail ofP( f 1)
grows at the expense of the negative tail, and the rev
occurs forP( f 0).

The increase of skewness with decreasing system siz
explained by the inherent discreteness of^ f a& in small sys-
tems. In Fig. 4~b!, where the mean valuêf 1& does not de-
pend on size, the average number of particles of typ
(^N1&5N^ f 1&) is about 101 forN52003200, about 25 for
N51003100, and about 6 forN550350. Thus, in absolute
terms, the fluctuations ofN1 to the left of ^N1& are more
restricted in the smaller systems and, as a result, the sm
systems spend more time at the right of^N1&. In the limit of
large system size, the fluctuations become Gaussian, as
gested by Fig. 4~b!.

We stress that, even though the distribution of the fluct
tions depends on the system size, the average values o
macroscopic quantities~such as,̂ f a&, ^wa

↑ &, ^ ḟ ↑& and the
macroscopic activation energyEa) are size independent. I
addition to Fig. 4~b!, this is supported by the excellent agre
ment between the exact curves and the simulation res
~points! provided in Fig. 2 forN550350 ~and similar fig-
ures for casesA–C, not shown!.

V. ONE-DIMENSIONAL INTERFACE

A. Description of the 1D model

We turn now to the next level of difficulty in the modelin
of wet chemical etching by considering an interface with

FIG. 5. Schematic representation of the one-dimensional in
face showing the four types of atom (a50,1,2,3) depending on
their number of links.
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self-defined transition-probability matrix. Consider a on
dimensional ‘‘surface’’ between a square lattice~whose
nodes represent atoms in the bulk! and the etchant region
~represented by the empty nodes of the lattice!. The surface
is defined as the set of occupied nodes having less than
links to neighboring occupied nodes and, thus, it may con
M53(11) types of surface sites~Fig. 5!. The sites having 0
links ~type 0! are included for completeness, since overhan
can occur in our simulations. As already commented in S
III B, these are rare events for the choice of parameters u
to model wet etching and, in practice, they have negligi
influence in the behavior of the interface. This explains
previous notation ‘‘M53(11)’’ for the number of atom
types.

The local dynamics of this system consists of rand
removals of particles from the surface~with probabilities
pa5p0ae2Ea /kBT, a50,1,2,3) and a Monte Carlo schem
can be used, as previously, in order to determine the ma
scopic evolution of the surface. After each removal, the s
type of each neighboring atom needs to be updated. Kee
track of all created/updated site types corresponding to e
site removal allows one to obtain the transition matrixP
5(pab)5(pa→b), which describes the probability that
site of typeb will be created following the removal of a sit
of type a. The state of the system is characterized by, e
$ f 1 , f 2 , f 3%, since f 0 is obtained from(a f a51. The total
number of sitesN ~not constant! fluctuates about the valu
imposed by the horizontal size of the system. The rate

removal of particleŝ ḟ ↑& will be used as a measure of th

etch rateR5DZ^N&^ ḟ ↑&.

B. Results for the 1D model

We consider an interface with linear sizeN5200 and re-
port on four representative cases of parameter values
shown in Table II. The choice of parameters inE was made
to provide comparison with the TFC model of Sec. IV C
The parameters inH result in an atomistically flat surface
characterized by slow etch pitting and fast step propagat
In F, the surface becomes rougher as the rates of etch pi
and step propagation are more similar. AlthoughG also re-
sults in an atomistically rough surface, it is included as
anticipation of the more realistic simulations presented
Sec. VI. Based on this example, we will see that the aver
activation energy associated to an atom type does not co
spond to the mean energy if the microscopic activation
ergy of that atom is uniformly distributed over an interval

r-
in eV.
TABLE II. Parameter values for casesE, F, G, andH.

p01 p02 p03 p04 E1 E2 E3 E4

E 53103 53103 53103 53103 0.3 0.3 0.5 0.3
F 1.0 53103 53105 1.0 0.0 0.3 0.55 0.0
G 1.0 53103 53105 1.0 0.0–0.1a 0.3–0.5a 0.55–0.85a 0.0
H 1.0 83104 53105 1.0 0.0 0.4 0.75 0.0

aRandom activation energies are uniformly chosen from the shown interval. Energies are measured
4-10
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FIG. 6. ~Color online! ~a! Rate of removal of particleŝḟ ↑& for casesE, F, G, andH. ~b!,~c! Determination of the activation energiesE^pa&

(a50,1,2,3) andE^ f a& (a51,2,3) for caseG. In ~c!, ^ f a&mastercorresponds to the values calculated using Eq.~29!. The casea50 is not
shown aŝ f 0&&1026.

FIG. 7. ~Color online! ~a! Activation energyEa
lin-fit explained as the sumEa

(p)1Ea
( f ) @Eq. ~16!# for casesE-H. ~b! Relative contributions

ea @Eq. ~18!# compared to the normalized fractions^wa
↑ & @Eq. ~15!# for casesE-H. Straight lines are guides for the eyes.
031604-11
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We determine the macroscopic activation energy co
sponding to the etch rate from the Arrhenius plot ln^ ḟ↑& vs b
in Fig. 6~a! and provide an example of the temperatu
analysis of̂ pa& and^ f a& for caseG in Figs. 6~b!–6~c!. In all
four cases, the macroscopic activation energy (Ea

lin-fit) differs
from the values provided byEa

(p) @Eq. ~17!# and the differ-
ences are explained by the fluctuations in the number
particlesEa

( f ) . A summary of the results for all four cases
given in Fig. 7~a!.

It is interesting to note that, although the activation en
gies for the microscopic removal probabilitiespi are distrib-
uted uniformly in intervals for caseG ~Table II!, according to
Fig. 6~b! the average activation energy for each particle ty
E^pa& does not correspond to the mean value of each en
interval. Actually, the values obtained from the linear fits
Fig. 6~b! are in excellent agreement with those~not shown!
obtained during the simulations by using Eq.~17! restricted
to the atom type considered~i.e., i Pa):

E^pa&5

(
i Pa

piEi

(
i Pa

pi

. ~37!

This illustrates the fact that Eq.~17! is physically meaningful
when all particles are of the same type~i.e., have the same
prefactors, although different activation energies! and there
are no fluctuations in the surface fractions. However, if
different activation energies for the same atom type are
distributed uniformly over an energy interval but, rath
form a discrete set of energies, the problem of determin
the average activation energy for an atom type becomes
mally equivalent to the problem of determining the mac
scopic activation energy for the whole surface. The aver
activation energy for each site type cannot be calculated
ing the simulations using Eq.~37! but, rather, a variation o
Eq. ~16! applied to the different subtypes within the sam
site type. As we will see in realistic simulations of w
chemical etching~Sec. VI!, surface atoms belonging to th
same site-typea ~i.e., sharing the same prefactorp0a) can
have very different activation energies, depending on the
cal coverage by H and OH groups, thus forming discrete
of energies. In that case, Eq.~37! will not provide the aver-
age activation energy of the atom type considered.

Figure 6~c! shows that the average surface fractions^ f a&
in the one-dimensional interface model are not described
Eq. ~29! (^ f a&master in the figure!. The disagreement is no
due to numerical error and similar results are obtained
casesE, F, andH. The reason for the failure of Eq.~29! in
the current model lies in the fact that the transition matrix
determined by the removal probabilities~and the underlying
geometry!, so that it is not an independent parameter as
implicitly assumed in the analytical derivation of Sec. IV
A physically more meaningful argument is that in the TF
model, for every particle that is removed, a new replac
particle appears, but, in the current model, the remova
one particle may be followed by the incorporation of tw
particles or no particles at all. Besides, in the current mo
03160
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there exists a nonlinear effect associated to the update o
atom type of the neighboring sites, which is not present
the TFC model.

Finally, Fig. 7~b! shows the relative contributionsea of
each atom type to the total macroscopic activation energy
casesE-H and compares them to the normalized fractions
removed particleŝwa

↑ &. This shows that the weightŝwa
↑ &

can be used during a simulation as indicators of the rela
importance of the different site types, even if the actual v
ues of E^ f a& and E^pa& ~required to evaluateea) are not
known.

The results of this section show that, also for the on
dimensional interface system, the~temperature-averaged!
macroscopic activation energy can be approximated
evaluating the termEa

( f ) a posteriori from the temperature
dependence of the surface fractions^ f a&. Even though the
explicit expression for the temperature dependence of^ f a& is
not known and the value of the activation energy cannot
calculated at each temperature during a simulation,
weights^wa

↑ & can be used to identify the relative importan
of the different sites.

VI. ANISOTROPIC WET CHEMICAL ETCHING
OF SILICON

A. Realistic model

Anisotropic wet chemical etching is a nonequilibriu
process in which both the microscopic roughness and m
phology, and the macroscopic orientation-dependent e
rate are determined by the relative values of the microsco
~atomistic! reaction rates. Gosa´lvez et al. @13# have shown
that the origin of the~large! differences in site-specific rate
is found in two microscopic mechanisms: the weakening
backbonds following OH termination of surface atoms a
the existence of significant interaction between the termin
ing species~H/OH!. The weakening of the backbonds d
pends only on thetotal numberof hydroxyls attached to the
two atoms sharing the bond and is independent of the
ticular distribution of the OH groups between the two ato
@13#, in such a way that each backbond is weakened by
same energye'0.4 eV for every OH group that is attache
to either atom. Thus, the energy of a bond between an a
terminated byi OH groups and an atom terminated byj
groups (i , j 50,1,2,3) can be written as

e i j 5e02~ i 1 j !e, ~38!

where eo is the bond energy between two bulk atoms (e0
'2.7 eV). Correspondingly, the total bonding energy for
surface atom withn first neighbors is simply the sum of th
energies of then bonds:

Ebonds5(
j 51

n

em,mj
, ~39!

where we have considered the most general case, in w
the target atom is terminated bym OH groups (m<42n)
4-12
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RELATION BETWEEN MACROSCOPIC AND . . . PHYSICAL REVIEW E68, 031604 ~2003!
and the j th first neighbor (j 51,2, . . . ,n), having itselfnj
first neighbors, is terminated bymj OH groups (mj<4
2nj ).

The other microscopic mechanism of major importance
wet chemical etching, namely, the interaction between
surface terminating groups~H/OH!, occurs only in the pres
ence ofindirect second neighbors@14,15#. Due to these in-
teractions, hydroxyl termination of the target atom~and its
first neighbors! involves additional energy terms, not take
into account in Eq.~39!. As a result, the total~local! energy
of a surface atom can be expressed as the sum of three t
@14#:

E5Ebonds1( ~eOH/H
TA 1eOH/OH

TA !1( ~eOH/H
FN 1eOH/OH

FN !,

~40!

where Ebonds is the energy of Eq.~39! and ((eOH/H
TA

1eOH/OH
TA ) @((eOH/H

FN 1eOH/OH
FN )# symbolically denotes the to

tal energy from the interactions between the OH groups
minating the target atom~TA! @the first neighbors~FN!# and
H and/or OH terminating the indirect second neighbors
the TA ~FN!. The geometrical restrictions to hydroxyl term
nation in the presence of indirect second neighbors is a m
festation of the important role of steric hindrance in anis
tropic wet chemical etching. In the present model, the sou
of steric hindrance is identified as the~H/OH-terminated!
indirect second neighbors.

Note that, although the parameterse ande0 used for de-
scribing the bonding energy are fixed by the first-princip
ab initio study @13#, the interaction energieseOH/OH

TA,FN and
eOH/H

TA,FN can be used as tunable parameters in order to des
different etchants. Once an etchant is chosen, its conce
tion is described in the model by the amount of surface c
erage by OH groups.

As with the previous simpler models for wet chemic
etching, the local dynamics of this model consists of rand
removals of surface sites with probabilities

p5p0e2DE/kBT, ~41!

where the activation energyDE is defined as

DE5max~0,E2Ec!. ~42!

Here,p0 andEc are parameters describing the different s
face atom types~as p0a and Ea previously!. We have
dropped the indexa to stress the fact that the local energyE
is calculated using the same expression@Eq. ~40!# for all site
types. The use of the function max(0,E2Ec) mimics the
Metropolis algorithm@16#. Following the discussion of Gos
álvez et al. in Ref. @14#, and the notation used in surfac
studies of Si~111! @17#, we consider the following surfac
site types.

~1! Type 0: Nonbonded atoms that have not been
moved,unlinked.

~2! Type 1: Singly bonded atoms:trihydrides; also re-
ferred to askinks.

~3! Type 2A: Two-bonded atoms on ideal~100! surfaces,
terrace dihydrides.
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~4! Type 2B: Vertical two-bonded atoms at ideal@ 1̄21̄#
steps,vertical step dihydrides.

~5! Type 2C: Horizontal two-bonded atoms at idea

@ 1̄21̄# steps,horizontal step dihydrides; plus all other pos-
sible two-bonded atoms.

~6! Type 3A: Three-bonded atoms at ideal~111! surfaces,
terrace monohydrides.

~7! Type 3B: Three-bonded atoms at ideal@12̄1# steps,
step monohydrides; plus all other possible three-bonde
atoms.

Note that the atoms of type 0 are included for comple
ness since they can occasionally appear in connection
the formation of overhangs. This is, however, a rare even
the simulations and has no measurable effect on the ev
tion of the surface. These atoms are removed~with probabil-
ity 1! as soon as they are encountered and, accordingly
can say that in this model the surface containsM56(11)
types of atoms.

The six pairs of parameters (p0 ,Ec) for Types
1,2A, . . . ,3B can be determined from comparison to expe
ment. The idea is to choose the parameters so that the
tive values of the etch rates of a number of surface orien
tions ~six, in principle! agree with those from an experimen
By adjusting the parametersp0, the simulated etch rates wil
shift up/down in an Arrhenius plot. Similarly the slopes
the etch rates can be controlled by tuning the parametersEc .
Alternatively, it is also possible to choose the paramet
(p0 ,Ec) based on comparison of the simulated surface m
phology with that from experiments. An example of this a
proach is provided in Ref.@2#.

Note that due to the different possible combinations of
terminating species H and OH around a surface site, the
tivation energiesDE take different values for atoms of th
same type. This situation resembles that of caseG for the
one-dimensional interface in Sec. V, where the activation
ergy of each atom type was randomly chosen from a unifo
distribution in an energy interval. However, in the curre
case the distribution is not uniform, but rather, a discrete
of activation energies. Thus, the problem of determining
average activation energy for an atom type is forma
equivalent to the problem of determining the macrosco
activation energy for the whole surface and Eq.~37! should
not be expected to be valid.

B. Results for the realistic model

In this section, we report on the relation between mac
scopic and microscopic activation energies for the two s
face orientations of silicon with highest technological inte
est: Si~100! and Si~110!.

The parameters of the model@eOH/OH
TA,FN , eOH/H

TA,FN , (p0 ,Ec)
andu] are chosen to simultaneously provide the formation
pyramidal hillocks on Si~100! and nosed-zigzag structures o
vicinal Si~110!, as shown in Ref.@2#. In the case of Si~100!,
we consider the fully texturized steady-state surface, co
pletely covered with pyramids@2#.

Figure 8~a! shows the etch rate of the two surface orie
tations considered, both as the rate of removal of partic

^ ḟ ↑& and as the actual etch rateR. The similarity between the
4-13



e
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FIG. 8. ~Color online! ~a! Etch rateR and rate of removal of particleŝḟ ↑& for ~100! and ~110!. ~b!,~c! Determination of the activation
energiesE^pa& andE^ f a& (a50,1,2A, . . . ,3B) for ~100!. ~d! Temperature dependence of the normalized fractions of removed particles^wa

↑ &.

FIG. 9. ~Color online! ~a! Activation energyEa
lin-fit explained as the sumEa

(p)1Ea
( f ) @Eq. ~16!# for Si~100! and Si~110!. ~b! Relative

contributionsea @Eq. ~18!# compared to the normalized fractions^wa
↑ & @Eq. ~15!# for Si~100! and Si~110!. Straight lines are guides for th

eyes.
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RELATION BETWEEN MACROSCOPIC AND . . . PHYSICAL REVIEW E68, 031604 ~2003!
activation energies demonstrates thatR is proportional to

^ ḟ ↑&, as claimed in Sec. III A. In order to understand t
origin of the macroscopic activation energy for Si~100! in
this fully texturized regime, thea posteriori analysis of the
temperature dependence of the removal probabilities^pa&
and the surface fractionŝf a& is provided in Figs. 8~b! and
8~c!. The activation energiesE^pa& andE^ f a& are obtained as
the slopes of the linear fits. Figure 8~d! shows the tempera
ture dependence of the weights^wa

↑ &, illustrating that, even
though the removal probabilities and the surface fracti
may vary strongly, the normalized fraction of removed p
ticles is comparatively a rather smooth function of tempe
ture. Taking the average values of^wa

↑ & over all temperatures
@legend of Fig. 8~d!# and using them in Eq.~16! together
with the values determined forE^pa& and E^ f a& show @Fig.
9~a!# that the macroscopic activation energy is described
the sum of the two termsEa

(p)1Ea
( f ) @Eq. ~16!#. This figure

shows that also the macroscopic activation energy of Si~110!
can be described as the sum of these two terms.

Finally, we show the relative contributionsea of each
atom type to the total macroscopic activation energy in F
9~b! and compare them to the normalized fractions of
moved particleŝ wa

↑ &. According to this figure, the etchin
process under the chosen conditions is dominated by
same surface sites in these two surface orientations: hori
tal step dihydrides (2C), step monohydrides (3B) and ver-
tical step dihydrides (2B). The fact that the contribution
from 3B is larger in~110! than in ~100! stems from the fact
that the step monohydrides are the natural termination
~110! ~100% in the ideal surface and about 60% in the
simulations! while in ~100! they appear mostly at pyramida
ridges and at the steps between the~111!-terraces forming
the pyramidal facets@2# @about 40% in these simulations, c
Fig. 8~c!#. Although the presence of the horizontal step dih
drides (2C) on these orientations is only a small fractio
~below 1%! in both surfaces, as shown in Fig. 8~c! for ~100!,
their relatively high removal probability@Fig. 8~b!# makes
them dominate the etching process. The same applies to
vertical step dihydrides (2B), which are present on surfac
by a fraction of a percent, as shown in Fig. 8~c! for ~100!.
These results show quantitatively that the minority spec
do control the etching process and that usually the ma
scopic activation energy cannot be attributed to only o
single species, not especially to the majority species, a
extended practice in wet chemical etching. We conclude
the weightŝ wa

↑ & can be used during a simulation as indic
tors of the relative importance of the different site-type
even if the actual values ofE^ f a& and E^pa& ~required to

evaluateea) are not known.
The previous discussion allows us to conclude that, in

fully pyramid-covered regime of Si~100!, the microscopic
mechanisms controlling the etching process are the sam
in Si~110!, even if these two surface orientations display ve
different morphologies, as shown in Ref.@2#. This conclusion
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should not be understood as a general proof that equal m
roscopic activation energies imply the same microscopic p
cesses. The present work shows that the macroscopic ac
tion energy is a very complicated quantity that cannot
identified with only one atomistic process and that, in pr
ciple, similar numerical values can be obtained for it w
different combinations of weights for different processes.

VII. CONCLUSIONS

By using the case of anisotropic wet chemical etching a
particular example of nonequilibrium systems with op
moving surfaces, it is shown that the macroscopic activat
energyEa ~defined as the slope of the etch rate in an Arrhe
ius plot! is explained by the sum of two termsEa

(p)1Ea
( f ) .

The first termEa
(p)—sometimes wrongly identified as the a

tivation energy itself—corresponds to the average of the
croscopic activation energiesE^pa& , and the additional term

Ea
( f ) accounts for the existence of fluctuations in the fractio

of particlesf a at fixed temperature. This shows that the d
scription of the macroscopic activation energy as a ‘‘to
surface energy,’’ such as(a^ f a&E^pa& , is not valid for these
systems and will lead to erroneous interpretations of resu
As a matter of fact, the ‘‘total energy’’ concept is shown
be correct only in the particular case that the transition m
trix (pab) does not depend on temperature, which is not
case in realistic models of growth and etching. In these m
els, (pab) is a complex function of the removal probabil
ties, of the temperature, and of the geometrical structure
the material, as shown by the particular examples conside
for chemical etching in this study.

It is shown that the correction termEa
( f ) can be accurately

determined bya posteriori analysis of the temperature de
pendence of the surface fractions in all cases considere
model is presented in which this term can be calculated a
lytically. Further work would be needed if the correspondi
analytical expression for the more realistic models is desir

It is also shown that the normalized fractions of remov
particles^wa

↑ & can be used as indicators of the relative im
portance of the different surface sites for the growth/e
process. This enables a quantitative measure of the way
the minority species dominate the process and stresses
fact that the macroscopic activation energy is a complica
function and should not be identified with one atomistic p
cess only; especially not with the majority species on s
face, as seems to be extended practice in growth and etc
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